On this page you can get a detailed analysis of a word or phrase, produced by the best artificial intelligence technology to date:
математика
линейный фильтр
математика
нелинейный фильтр
общая лексика
съемочный светофильтр
Linear filters process time-varying input signals to produce output signals, subject to the constraint of linearity. In most cases these linear filters are also time invariant (or shift invariant) in which case they can be analyzed exactly using LTI ("linear time-invariant") system theory revealing their transfer functions in the frequency domain and their impulse responses in the time domain. Real-time implementations of such linear signal processing filters in the time domain are inevitably causal, an additional constraint on their transfer functions. An analog electronic circuit consisting only of linear components (resistors, capacitors, inductors, and linear amplifiers) will necessarily fall in this category, as will comparable mechanical systems or digital signal processing systems containing only linear elements. Since linear time-invariant filters can be completely characterized by their response to sinusoids of different frequencies (their frequency response), they are sometimes known as frequency filters.
Non real-time implementations of linear time-invariant filters need not be causal. Filters of more than one dimension are also used such as in Image processing. The general concept of linear filtering also extends into other fields and technologies such as statistics, data analysis, and mechanical engineering.